Complex Analysis qualification exam: May 2020

Note: all statements require proofs. You can make references to standard theorems from the course; however, you need state the relevant part of the theorem in your own words, unless it's a well known named theorem. For example, "we had a theorem in the class that said that any continuous function on a compact subset of \mathbb{R}^{n} is uniformly continuous" is a good reference, and "by the uniqueness theorem from the class, f is unique" is not a good reference.
(1) Let $u(z)=u(x+i y)=\log \left(x^{2}+y^{2}\right)$ (here $x, y \in \mathbb{R}$ and the usual real logarithm is used). Find a holomorphic function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ such that $u=\operatorname{Re} f$, or explain why it does not exist.
(2) Find a conformal isomorphism between the set $\{|z|<1,|z-i|<1\}$ and the upper half-plane.
(3) Does the function $f(z)=\sqrt{z(z-1)}$ have a holomorphic branch in a neighborhood of $z=\infty$ (that is, in some set $\{R<|z|<+\infty\}$). If yes, find its principal part around $z=\infty$. In other words, find a polynomial $p(z)$ such that $f(z)-p(z)$ has a removable singularity at $z=\infty$.
(4) Find $\oint_{C} \frac{d z}{\sqrt{z^{2}+z+1}}$, where C is a circle $|z|=r$ with $r \neq 1$, oriented counter-clockwise. Use any branch of $\sqrt{\cdot}$, but specify which one you are using.
(5) Find $\int_{0}^{\pi} \tan (x+i a) d x$ for $a \in \mathbb{R}$. If the integral does not converge absolutely, find its principal value.

